The Synthesis of Tertiary Amides by the Reaction of Adducts of Schiff Bases and Acyl Chlorides with Allylsamarium Bromide

Ming Xin YU, Yong Min ZHANG*

Department of Chemistry, Zhejiang University, Hangzhou, 310028

Abstract: Adducts of Schiff bases and acyl chlorides react with allylsamarium bromide to afford the corresponding tertiary amides.

Keywords: Allylsamarium bromide; tertiary amides; Schiff bases; acyl chloride, synthesis.

Samarium diiodide is an excellent electron transfer $agent^{1-2}$. The application of samarium metal in organic synthesis has stimulated great interest recently³⁻⁵. Curran first reported the samarium Grignard reaction⁶. Allylmagnesium bromide is usually accompanied with a great quantity of coupling by-product in preparation⁷. However allylsamarium bromide is not so active as allylmagnesium bromide, it does not give rise to coupling during preparation. Our group has studied the synthesis of allyl selenides⁸ and sulfides⁹ by allylsamarium bromide to nitrile¹⁰. Adducts of imines and acyl chlorides as reactive electrophilic reagents have been successfully used in the intra and intermolecular α -amidoalkylation reaction for the synthesis of different N-heterocyclic compounds¹¹⁻¹². Herein we wish to report the reaction of allylsamarium bromide with adducts of imine and acyl chlorides to afford tertiary amides. The products were identified by EA, IR, ¹H NMR and MS spectra. The advantages of this method are rapid reaction and simple operation. The results were summarized in **Table 1**.

No.	R	R^1	\mathbb{R}^2	Yield (%)
1^{a}	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	42
2 ^a	C_6H_5	C_6H_5	C5H11	46
3 ^a	C_6H_5	C_6H_5	CH_3	82
4^{a}	p-CH ₃ C ₆ H ₄	C_6H_5	C_6H_5	38
5 ^a	p-CH ₃ C ₆ H ₄	C_6H_5	C5H11	41
6 ^a	p-CH ₃ C ₆ H ₄	C_6H_5	CH_3	76
7 ^a	p-ClC ₆ H ₄	C_6H_5	C_6H_5	44
8 ^a	p-ClC ₆ H ₄	C_6H_5	C_6H_5	47
9 ^a	p-ClC ₆ H ₄	C_6H_5	CH_3	84
$10^{\rm a}$	C_6H_5	C ₆ H ₅ CH ₂	C_6H_5	69
11 ^a	C_6H_5	C ₆ H ₅ CH ₂	C_5H_{11}	71
12 ^a	C_6H_5	$C_6H_5CH_2$	CH_3	56
13 ^a	C_6H_5	n-C ₃ H ₇	CH_3	52
$14^{\rm a}$	C_6H_5	n-C ₄ H ₉	C_6H_5	54
15 ^b	C_6H_5	C_6H_5	CH_3	78
16 ^b	p-CH ₃ C ₆ H ₄	C_6H_5	CH ₃	76
17 ^b	C ₆ H ₅	n-C ₄ H ₉	C_6H_5	49

Table 1. Yields of Tertiary Amides (1)

*Yield of isolated product. **a, X=H; b, X =Cl.

General Procedure: Samarium (0.33g, 2.2 mmol), THF (20 ml), allyl bromide (0.30g, 2.5 mmol) were stirred at room temperature under nitrogen. The stirring was continued until the samarium powder disappeared (1 h). Adducts of Schiff bases and acyl chlorides were added to the solution, and the mixture was stirred for 1h at room temperature under nitrogen. After work-up, the crude product was purified on TLC.

Acknowledgment

We thank the National Natural Science Foundation of China (Projects No. 29672007 and No. 294938004) and the Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences for financial support.

References and Notes

- 1. G. A. Molender, Chem. Rev., 1992, 92, 29.
- 2. G. A. Molender, Haris, C. R. Chem. Rev., 1996, 96, 307.
- 3. M. Lautens, Y. Ren, J. Org. Chem., 1996, 61, 2210.
- 4. M. Hojo, H. Ihara, A. Hosomi, J. Am. Chem. Soc., 1996, 118, 3533.
- 5. T. H. Chuang, J. M. Fang, W. T. Jiang, Y. H. Tsai, J. Org. Chem., 1996, 61, 1794.
- 6. D. P. Curran, M. J. Totleben, J. Am. Chem. Soc., 1992, 114, 6050.
- 7. H. Gilman, H. McGlumphy, Bull. Soc. Chim. Fr., 1928, 43, 1323.
- 8. M. X. Yu, Y. M. Zhang, W. L. Bao, Synth. Commun., 1997, 27, 609.
- 9. M. X. Yu, Y. M. Zhang, Synth. Commun., 1997, 16, 2743.
- 10. M. X. Yu, Y. M. Zhang, H. Y. Gou, Synth. Commun., 1997, 27, 1495.
- 11. A. P. Venkov, S. M. Statkova, Synth. Commun., 1991, 21, 1511.
- 12. A. P. Venkov, S. M. Statkova, I. I. Ivanov, Synth. Commun., 1992, 22, 125

Received 6 April 1998 Revised 16 November 1998